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We study the one-dimensional Blume-Emery-Griffiths model, subjected to a combination of
Glauber (reaction) and Kawasaki (diffusion) dynamics. The Glauber rate satisfies detailed balance
at a temperature 87!, while the Kawasaki rate randomly exchanges nearest-neighbor spins. We ob-
tain the hydrodynamic equations for the two order parameters m (magnetization) and g (quadrupolar
ordering). We also present the phase diagram and other macroscopic properties, namely, continuous
and discontinuous phase transitions in the limit of infinitely fast exchanges.

PACS number(s): 64.60.—i, 05.50.4+q, 05.70.Ce, 75.10.Hk

I. THE MODEL: DEFINITIONS

There has been much progress in recent years in deriv-
ing macroscopic equations [1] for systems whose micro-
scopic dynamics involve some stochastic elements, e.g.,
particles (spins) on a lattice with stochastic dynamics.
These systems usually have some conserved quantities,
for which the stochastic dynamics maintains a local equi-
librium distribution. One way to formulate a stochastic
microscopic dynamics that generates these macroscopic
equations is through competing dynamics [2], where the
properties of the stationary states are no longer equilib-
rium Gibbs states. Some questions can arise about these
nonequilibrium systems that exhibit phase transitions:
How do parameters such as the rate ratio, €, of the mi-
croscopic time scales of competing dynamics, the range
of the exchanges, etc., affect the various types of phase
transitions? A few results are known in this context.
In the two-dimensional (2D) Ising case it was shown by
Gonzaléz-Miranda and Marro [3] that for € > €* the sys-
tem presents a continuous phase transition, otherwise for
€ < €* they observe a discontinuous one. Other nonequi-
librium systems are known to exhibit discontinuous phase
transitions, as in the case of the autocatalytic chemical
models [4] where a discontinuous transition is observed
for d = 4 (upper critical dimension). Another model is
the stochastic cellular automata devised by Bidaux, Boc-
cara, and Chaté [5], occurring for d > 2, but continuous
for d = 1. The only known 1D model presenting first-
order phase transition is the one proposed by Dickman
and Tomé [6], competing diffusion and multiparticle an-
nihilation. Here we present a 1D model which exhibits
a rich phase diagram with first and second phase tran-
sitions, even in the limit € —-0. This model consists of
a system with three states per spin (¢ = £1,0), known
as the Blume-Emery-Griffiths (BEG) model [7] with re-
duced Hamiltonian H (o) given by

N
—BH(e) = [Jo20s41 + KoZo2,, — Do?]. (1.1)

z=1
The spin configuration o = {0, : ¢ € Z',0 = 1,0}
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evolves in time due to a combination of a spin-flip
(Glauber [8]) process in contact with a heat bath at tem-
perature 8~ ! and a diffusion process (Kawasaki [9]) de-
fined for nearest-neighbor (NN) exchanges, with a dif-
ferent associated bath temperature 3 ~!. This rate will
be assumed to be much faster than the spin flip. This
model was also studied by us using Monte Carlo simula-
tions for arbitrary finite rates and range of the exchanges
[10]. The two-state, per spin, version of this model was
studied by De Masi, Ferrari, and Lebowitz [11] in the
limit € — 0, by Dickman [13] using a mean-field approxi-
mation for arbitrary €, and by Droz, Ricz, and Tartaglia
[14] using Monte Carlo simulations.

Under these assumptions, the configurational proba-

bility distribution for the system, P?# (o;t), evolves in
time according to the following master equation:

% = (L& + 208 )PP (o) (1.2)
where

L= "> "(% - 1)®(z,0), (1.3)

L = > 6% - 1) (2,9, ). (1.4)

|lz—y|=1

The operators pg and p3¥ act on an arbitrary function
of the configuration by respectively flipping the spin at
site x, or exchanging the two spins, at points z and y. As
mentioned before, Lg is the generator for a Glauber-type

dynamics and L?{ is the generator for the exchange pro-
cess. The rates associated with these processes c®(z; o)

and ¢? (z,y; o) both satisfy detailed balance at two dif-
ferent inverse temperatures 3 and ,8’. As a consequence,

L¢P (o) =0, (1.5)
with
Pgl(a) = [E exp[—-,B’H(a)]] exp[—BH ()],

o
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and

L% PE (o5m,q) = 0, (1.6)

where Pgl (o; m, q) is the Gibbs state at inverse temper-

ature ,8', corresponding to fixed values. for the magneti-
zation m and quadrupolar average g. Finally, the param-
eter € in Eq. (1.2) just measures the ratio of the intrinsic
microscopic time scales associated with the two different
dynamic processes.

II. HYDRODYNAMIC REGIME (e — 0)
A. General results

There are several limits where it is possible to derive
macroscopic equations from underlying microscopic evo-
lutions, under appropriate space-time (hydrodynamic)
scaling [15]. These equations arise for very fast exchanges
(e — 0), leading to a scaling of times by ¢ =2 and of length
by €~1. In this limit the macroscopic local quantities sat-
isfy a couple of reaction-diffusion equations.

Hereafter, we shall only consider the case of ﬁ =0
(completely random exchanges). In this case, the dis-

tribution Pfq (o;m, q) is a local equilibrium distribution,
with spins distributed independently inside domains of
length €1 in original NN distance.

PP

zeﬂr € o,

——a cﬁ(ma>+e 1

9ge(r; t)

cEQ, ¢ a,

me(r;t) = (Mme(r;0)),9e(r5t) = (ge(r; ).

> 2

€N, e z=z+1

T Y (oo (m,z;a)>, 2.4)

z€Q,  z=zx1

at <Z Z(rf —az)cﬂ(ma>+€—1<

Multiply Eq. (1.2) by o, or 02 and sum over the spins
to obtain the respective dynamic evolution equations,

3oz = —<§;<af: - o;“)cﬁ(w;a)>

+e2 3 (02 — o) (2,20)), (2.1)

z=z*l
where a = 1,2. The averages here were taken with the

distribution P8P (o;t). Let us define the magnetization
and quadrupolar average densities on the scale ¢! by

me(r;a')ze—1 Z Oz, (2.2)
zEQ, e

ge(rio) =€ > a2, (2.3)
TENQ, e

where Q. . are domains of size €~ ! and centered at the
point deﬁned by r. Obviously two NN domains located
at » and r are separated by a = ¢!, which is our unit
of length. The change in the quantltles me(r; o) and
ge(r; o) in a fixed macroscopic interval of time arises from
the number of flips inside €., which is proportional to
e !, and from the exchanges through the boundaries of
Q, ., that are proportional to the gradient (o €) of the
me(r;o) or g(r; o), times e~ 2.

Using Eq. (2.2) and Eq. (2.3) we obtain

-

In the limit € — O there is a clear separation between the macroscopic and microscopic scales, and we expect that
the exchanges that become infinitely fast on the macroscopic time scale compel the spins inside a domain to become
independent, since an infinite number of exchanges takes place inside each domain, €2, ., during the time interval for
a single spin flip. Simultaneously, as a consequence of € — 0 the spin exchanges through the domain walls now have
a negligible effect on the macroscopic quantities.

(2.4) may be taken with the distribution Pf (o;t) =

With these assumptions, the averages in Egs.

IL. Pgl (or;m(r;t),q(r; t)), where o, corresponds to the spin configuration for the domain r. Then, the macroscopic
time evolution for the order parameters takes the form

—Bmg;t) = —<Z,(am - a;)cﬁ(x;o)> D SR C 02)e® (2,20))r, (2.5)
=% m,q r =r+a

aq(r t) _ <Z(a (:c;a)> 2 3 (02 - 02) (2,20))n, (2.6)
m,q ' =r+a

where z € Qe and z € O,

with the distribution Pgl (o;m,q), and (), means an av-

take the limit ¢ — 0 these evolution equations reduce to a
couple of macroscopic reaction-diffusion equations, simi-
lar to those obtained by De Masi, Ferrari, and Lebowitz
[11] for the Ising model.

the average ()m,q is taken

erage taken with the product distribution POB (o;t). If we
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B. Application

Here, we will derive explicitly the macroscopic evolu-
tion equations for given rates c®(z;o) and cf (z,y; o)
with 3 = 0. The Glauber-type rate c®(z; o) for inverse
temperature 3 may be written in the following form:

FA(x;o) = %{1 —tanh[%(am —0;)

L cr;f)] } (2.7

where S, = 05_; + 02,,. For the exchange process we
consider c°(z,y; o) = 1. Using these rates and consider-
ing the homogeneous case (the diffusion term disappears)
in Eq. (2.5) and Eq. (2.6) we obtain (see Appendix A)

dm

s Aiym + Bymg + Dymq? + Cym3, (2.8)
d
d—z = Az + qu + sz2 + D2q2 + E2m2q + F2q3 (2.9)

(the coeflicients are functions of J, K, and D, and are
given in Appendiz A), where m and q are site independent
order parameters.

C. Stationary states: phase diagram

In this subsection, we will present a discussion of the
previous polynomial equations in the stationary state.
Equating the right-hand side of Eqgs. (2.8) and (2.9) to
zero, we may cast the equations in the following form:

0= A;m + Biymgq + Dymg? + Cym® = mf(m,q),
0= A; + Bzq + Com? + D3q* + E;m?q + Faq®

(2.10)
= (C2 + E2q)m® + g(q).

In what follows we shall consider three different phases,
as they are usually defined for the BEG model in equi-
librium [12].

e Paramagnetic phase (P): m = 0, ¢ = 2/3, equal
number of spins in the three states.

e Quadrupolar phase (Q): m =0, g # 2/3, equal num-
ber of polarized spins (o = +1) and different number of
zeros. The particular case m = ¢ = 0 will characterize
the totally quadrupolar phase (tQ).

e Ferromagnetic phase (F): different number of spins
in the two polarized states.

Also the order parameters have to obey the obvious
condition, '

Im| < ¢ <1. (2.11)

The solutions were numerically investigated by using the
computer and some appropriate numerical routines for
this study. For each of the tested points in the phase
space (K/J,D/J), we sweep the temperature (steps ~
107%) to get the respective solution. They are studied in
the following way.

e m = 0. This solution is always present. The cubic
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equation for g(g) has been found always to have only one
real physical solution. This solution (henceforth, denoted
by go) is obviously dependent on the temperature and the
other Hamiltonian parameters. However, for D = K = 0,
the analytical solution is found to be ¢ = 2/3, indepen-
dent of temperature. For other values of the parame-
ters, the thermal behavior of go falls into the two broad
classes, typified by Fig. 2. Starting at infinite tempera-
ture (go = 2/3) and decreasing the temperature, we find
that either go increases to ¢ = 1.0 (K/J < 0) or decreases
to ¢ = 0.0 (K/J > 0). This suggests that well defined
phases will be found at T' = 0.

e m # 0. Some insight into the numerically found solu-
tions may be obtained by performing an analysis similar
to Landau’s approach to equilibrium phase transitions.
If we assume that m is small, we may then eliminate ¢
between Egs. (2.10) and obtain for the magnetization the
equation,

0=am+bm?+cm®+---. (2.12)

Here, the parameter-dependent coefficients a, b, and ¢
are given in Appendix B.

We first consider the critical temperature defined by
a = 0, that is, A; +B1qgo+D1g2 = 0. If b remains positive
while T is decreased then the transition is continuous or
second-order (dotted lines in the figures), since obviously
only m = 0 at higher temperatures. Upon decreasing
the temperature, this ferromagnetic phase may persist
down to T' = 0 or another critical line is found where one
of the conditions in Eq. (2.11) is violated and therefore
the system reenters the quadrupolar phase through a dis-
continuous or first-order phase transition (dashed line in
the figures). Figures 2(a) and 2(b) illustrate the thermal
dependence of the order parameters.

On the other hand, if b remains negative (near the
point where a vanishes), then when T' increases the sys-
tem goes through a second-order phase transition. This
ferromagnetic phase now persists until a new violation of

1.2

(a)

T/J
0.8+

0.6

0.4+

0.2+

FIG. 1. Plot of the cross section T'/J against D/J for
K/J = —0.5. The inset shows the order parameters’ varia-
tion with T'/J along line (a). Dashed and dotted lines cor-
respond respectively to discontinuous and continuous phase
transitions.
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Eq. (2.11) is found, whereby a strong first-order transi-
tion is observed and the system reenters the quadrupo-
lar phase at higher temperatures [as shown, again, in
Figs. 2(a) and 2(b)].

When these two transition lines meet, we identify this
point as a tricritical point (TP in the figures). Alter-
natively, this point corresponds to a = b = 0. We now
consider how these critical lines are affected by a change
of the Hamiltonian parameters.

In Figs. 1, 2, and 3 we plot some sections of the phase
diagram for different values of K/J. Figures 4 and 5 also
show sections corresponding to constant values of D/J.

1.2 t t t t
T/
1+ K/J=0.0 1
0.84 ST () Q i
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NI i‘J
0.4+ \ ! " +
Q A : Q L\
\ l'.
0.24 ] % 1
f Y
l N
0 —+ } - t
-1 -0.5 0 D/J 0.5 1 1.5
1 T r .
0.8
0.6+
m
04}
0.2+
O )
0 02 04 06 08 1 1.2
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0.4}
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0.1
0561702 03 04 05 06 07 08
T/
FIG. 2. Plot of the cross section T'/J against D/J for

K/J = 0.0. (a) The inset plot corresponds to the order pa-
rameters’ variation with 7/J in line (a). (b) The inset plot
corresponds to the order parameters’ variation with T'/J in
line (b).
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FIG. 6.
gram for several values of K/J and D/J.

Tridimensional representation of the phase dia-

Some different phases can be seen in these plots. For
instance in Fig. 2 we see two distinct curves that intersect
at a tricritical point. These critical lines correspond to
the (Q) ¢ (F) + (Q) transition, when one decreases the
temperature.

Consider Fig. 3. For —0.5 < D/J < 0.0 a ferromag-
netic region appears, and at 7' = 0, ¢ = 1.0. It is inter-
esting to note that when the temperature is increased a
first-order phase transition, (Q) + (F), is observed fol-
lowed by a (F) ¢ (Q) second-order type. The reverse
happens in the region, 0 < D/J < 1.0 and at T = 0 we
have ¢ = 0.0 (tQ). In Fig. 4, and at T' = 0, we found that
for —-1.0 < K/J < 0.0, ¢ = 0.61804... and in the inter-
val 0 < K/J < 1.38,¢=0.715225... . For K/J > 1.38
there is no transition and ¢ goes from 0.7966...at T =0
to 2/3 at T = oo. Thus, for D/J = 0.0, the ground
state does not correspond to a completely ordered phase.
In Fig. 1, and for —0.1164 < D/J < —0.036, when

one increases the temperature from 7' = 0 , four phase
transitions were observed (see inset of Fig. 1); and the
same happens for —0.036 < D/J < 0.0. The point
D/J = —0.036 is a tricritical point.

Of course, since there is no free-energy functional to
decide upon the relative stability of simultaneous phases,
we cannot establish when exactly some of these phase
transitions take place. For this reason, the sketched
phase transition surfaces in Fig. 6, obtained from the
numerically studied cross sections, must be considered
as a tentative summary of the phase diagram.

ITII. CONCLUSION

We studied the one-dimensional BEG model subjected
to a combination of two microscopic dynamics in the limit
of completely random and faster exchanges, that is, the
limit € — 0 and infinite temperature for the exchanges.

We derived the reaction-diffusion equations for this
model—they generalize the results found [11] for the Ising
model, where only second-order phase transitions are ob-
served. This Ising-like behavior is recovered for D — —oo
and K = 0. Some sections of the phase diagram were
obtained, showing continuous and discontinuous transi-
tions. We are then in the presence of a 1D model with a
starting Hamiltonian that exhibits discontinuous transi-
tions even in the limit € — 0.

Two important points not discussed here are: how is
the phase diagram affected when exchanges take place
at finite temperature or when a different definition of the
random microscopic exchanges is assumed. These will be
matters for future work.
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APPENDIX A

Here we present a more detailed derivation of Egs. (2.8) and (2.9). Equation (2.7) may be cast in the following

form:

P(z;0) = H{1 = (o0 — 0,)[(1 + 02)(1 + 0,,) tanh(A + B) + (1 — 05)(1 — 0,,) tanh(4 — B) — 0,0, tanh(24)]},

with A = JS;/2 and B = (K S, — D)/2.
Using the definition of S; and S2 we have

(A1)

tanh(24) = %0’2_10',:+1(0'm_1 + 0z41) tanh(2J) + (0z—1 + Ox4+1)(1 — Og—105+1) tanh(J)

= by tanh(2J) + by tanh(J)
and also

tanh(A + B)

(A2)

J K D
tanh{5(02_1 +0z41) + ?(”i—l +o2i) - 5}

2 2 2 2 2 2
=a1(0p—1+ Op41) +a2(02_1 +02,1) + 30510241+ a4(02_107 1+ 05 _10z41)+ @50,_10,,,— ae.

(A3)
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Finally, tanh(A — B) may be formally obtained from tanh(A + B) by exchanging the sign of K and D. We obtain

* *0 2 2 * * 2 2 * 2 2
tanh(A — B) = a](0o—1 + 0o41) + a5(05_1 + 04,1) + @300 10041 +a4(0z_105 1 +0%_10.41) +aloz_j05., — ag,

where af(J,K,D) = a;(J,—K,-D), Vi € {1,...,6}.
The coefficients a; and a} can be found easily by equating
the left- and right-hand sides of Eq. (A3).

With these equations we obtain, for the time evolu-
tion of the order parameters, Egs. (2.9) and (2.10), the
respective coefficients given by

Ay =2(ay + a}) — 3(as — ag) — 3,

By =2(aq + a}) — (a1 + a]) + (a2 — a3) + 4ba,
Ci = 3(as +a3),

D, = %(a5 —ai) — (ag + a}) + 4by,

Ay =2 — (ag — ag),

By =2(az —a3) — %(as —ag) — 3,

C> = (a3 — a3) + (a1 + ai),

D; = (as — a3) — (a2 + a3),

Ez = (a4 + a3) — (a3 — a3),

Fy=—(as —ag).

(A5)

(A4)

APPENDIX B

Using Eqs. (2.11) we obtain the result that, near the
second-order phase transition, a = A; + Baqo + D1gZ = 0
with go being a solution of Ay + B2go + D2gZ + F2q3 = 0.
To obtain the expression for b, one has to solve Eq. (2.9)
for small m. The solution is of the form

q=qo+ qm?, (B1)
where ¢; is given by
Cy + qoFE>
= — . B2
n Bz —2D3qo + 3F2q3 (B2)
This yields
3b = qul + 2D1q1 + Cl. (Bg)
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